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1 Introduction

The ability to manipulate carbon nanotubes with increasing precision has enabled a

large number of successful electron transport experiments. These studies have pri-

marily focussed on characterizing transport through both metallic and semiconducting

wires [1, 2, 3, 4, 5, 6]. Reference [1] demonstrated ballistic transport in single-wall

nanotubes for the first time, although the experimental configuration incurred large

contact resistance. Subsequently, methods of producing low contact resistances have

been developed and two terminal conductances smaller than 50kf_ have been repeat-

ably demonstrated in single-wall and multi-wall nanotubes. In multi-wall nanotubes,

reference [5] demonstrated a resistance of approximately h/2e 2 in a configuration where

tile outermost layer made contact to a liquid metal. This was followed by the work

of reference [6] where a resistance of h/27e 2 (approximately 478t]) was measured in a

configuration where electrical contact was made to many layers of a multi-wall nan-

otube. References [5] and [6] note that each conducting layer contributes a conductance

of only 2e2/h, instead of the 4e2/h that a single particle mode counting picture yields.

These small resistances have been obtained in microns long nanotubes, making them

the best conducting molecular wires to date. The large conductance of nanotube wires

stems from the fact that the crossing bands of nanotnbes are robust to defect scattering

[7, 8, 9].

Transport details through CNT caps is important for many purposes. In STM

experiments, electrons tunnel from the sul)strate being 1)robed to the tip of a capped or

open nanotube. Experiments in molecular electronics m_Lv also use a nanotube tethered

to metal or other parts of the circuit. For these applications, un(lerst_m(iing the physics

of electron transport through capped nanotubes is relevant. To gain this ,mderstanding,

references [10, 1l, 12, 13] almlyzed the wave fimction an(l density of states of capped

nanotul)es, and reference [1,1] recently studied the electron transmission l)rol)al)ility

through polyhedral capl)e([ mtnotubes.

In the present work, we extend previous work [1,1] to include the eltix:ts of an

arl)itr_try m_mber of lea<Is to the nanotul)e. We also examine the role of defiwts in

{[etermining nanotul)e conductance. In section 2 we discuss a method to calculate

the transmission through mtnotulws with _tn arl)itrary mlmber _[" leads. In section 3,

we revimv tile role of _[efix'ts in _h'termining the conductance of ham)tubes at band-



(,(,,_terenergies[7, 8, 9] at_¢[at higtwr energies[9]. The discussionof the role of defects
closely follows our earlier work in r('fercnce[9]. Two types of defects are discussed
here. The first is weak uniform disorder and the secondis strong isolated defects.
The transmission of electronsat the band center is reasonably insensitive to the first

type of defect but is greatly diminished by the second. Transmission through caps is

discussed in section 4, and this discussion closely follows our earlier work in reference

[14]. Our discussion is for polyhedral caps. The transmission is found to correspond

to the local density of states (LDOS) at all energies except those corresponding to the

localized states. Hybridization between substrate and carbon nanotube states leads

to interference paths that yield strong transmission antiresonances. The presence of

defects in the nanotube can transform these antiresonances to resonances. The current

carrying capacity of these resonances, however, depends on the location of the defects.

Conclusions of our study are presented in section 5.

2 Method
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Figure 1: Carbon nanotube in contact with three leads: a semi-infinite carbon nanotube on the right,

and metallic leads in the center and in close prox'imity to the cap at the left.

In this section, we l)resent the model and method used to analyze transport through

CNT. Figl. shows a nanotube (dcnott_d by C) with three leads, a semi-infinite carbon

nanotube on the right, a mct.allic lead in the center and a substrate (denoted by S)

which is the inctallic lead in close proximity to the cap at the left. Pla(:ing the metallic

lead at the center of the nanotul)c is aki_ to the experiments in reference Ill, where the

m(_tal is side-contacted to the, mu_()tul)e. Tim transmission and LDOS are calculated

from the Green's function of the _mm)tui)e connected to the lea(Is. The leads are by

definition objects that are (:apabl(_ ()f injecting electrons into the device, at_([ so are

typically modeled as either mct;_ls [15] or semi-infinite carbon nm_otul)es. The Green's

function is calculated by the 1)ro(:e(h_re given in refcre_w, es [16, 17] and []8]. The

c(tuation governing the Gr('('n's fi_twtion is:

El- IL'- _,, '"

wlwr(, lI(,, is tim lI_tmiltouian _1" t|w isolat¢'(t mttiotul)(, and I is th(' i¢l_Htity matrix of

.)



to connection with lead (_, and is given by,

K-,r -_- r "_- c. (2)

ti,'_,_ (I"_,-c) is the Hainiltonian representing the interaction between C (lead c_) and

lea(l et (C), and _ r "_ct is a square matrices9, is the Green's function of the isolated lead. v,r

of size equal to the number of atoms in C. Note that only sub-matrices of E_, that

corresl)ond to atoms in C coupled to lead c_ are non-zero. Further, only those elements

of 9_ that couple atoms (nodes) in a to C are required. The real part of the diagonal

components of E_ represents the change in on-site potential of the C atoms, and the

imaginary part is responsible for injection of electrons from a to C. In general, the

off-diagonal elements of x_r_ cannot be neglected, since they play an important role in

detertnining transport characteristics.

The single particle LDOS at site i [Ni(E)] and transmission probability between

leads _ and fl [T,_(E)] at energy E are obtained by solving Eq. (1) for the diagonal

element Gi_ and the off-diagonal sub-matrix of G _ in C that couple a and fl [17, 18]:

N,(E) = _Z Im[Gf,(E)] (3)
7r

T_,,o(E) = T_ac¢[roGTzG°]. (4)

F _, = 27cVc_e, Irn[g_ (E) ] V_,_c , where [rn extracts the imaginary part.

For computational efficiency and to calculate tile transmission through a long

nanotube region, we divide the structure C into N smaller units with each unit typically

representing a few rings of atoms along the circumference of the tube (Fig. 1). The

units need not necessarily be of the same size, but the main idea is to order atoms in

the units such that [El - tic. - _ E_] is a tridiagonal block matrix,

ill Bt2 0 O0 0 0 (G_I _ fl _

B21 A2 Bz_ O O O O G,_ O

O B3:2 • • O O O • •

O 0 • • • 0 0 • = • (5)

000.. ,, 0 • "

0 0 0 0 " • I=JN t,,_ G%--ll 0

0 0 0 ()0 BN, N _[ AN GN1 _,Oj

The advantage of casting the matrix in the block tridiagonal form is the efficiency

of matrix inversion compared to a non-tridiagonal sparse matrix [19]. If the ith unit

= _ is a N, bycontains N, atoms, then the diagonal block, .4i [El - tic - _. "-.-'o,]itatao,=t:

N_ square matrix. The off diagomd sub-matrix Bij represents coupling between units i

and j, and is a Ni l)y Nj rectangular matrix, where Nj is the mmfl)er of atoms in unit

j. Also, note that B 0 is non zero only when li-jl = 1. In Eq. (4), computing T_Z only

requires solving for the off:diagonal rectangular matrix G,,, u I)etween units i, and if3.

i, and ir_ are units representing earl)on atoms comm(:ted to leads eL and fl respectively.

Finally, the singh,-partich_ tlamiltonian of the nanotube is [20],

". : Z +Z +,.,], (6)
i i,j

where, _, is the on-site 1)otential all(l liS is the hol)l)ing parameter l)etween lattice sites

i and .j. {c_, c, } are the creation aud amfihilation Ol)erators at site i. The tlamiltonian

t)etweeEl a mmotul)e (C') an([ metal (t1[) is,

",,,,-- E +,.,'] , (7)



when., r,x is the hopping paranmter between lattice sites i of the nanotube and x of the

metal. {d]:, d,:} are the creation and annihilation operators at site x in the metal. The

Hamiltonian of the metal is similar to Eq. 6, except that the on-site potential, hopping

parameters and lattice coordination corresponds to that of the metal.

3 Defects

Having described the system, model and method, we now consider the effect of two types

of defects on transport. The effect of weak uniform disorder on the localization length

of nanotubes was first considered in reference [7], within the context of a two band

model by calculating the el;_stic mean free path and relating the mean free path to the

localization length. Reference [9] independently calculated the transmission probability

through disordered nanotubes of varying lengths connected to disorder free semi-infinite

carbon nanotube leads. Weak uniform disorder is herein modeled by randomly changing

the on-site potential of the atoms, e, _ e_ + &i in Eq. (6), where &_ is randomly

chosen from the interval ±le_,,ao, r,I at all lattice points. A larger l¢_,,aom I implies larger

disorder.
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Figure 2: Trmlsmission probability versus energy of a ( 10,10) nanotube with disorder distributed over a

length of 1000 ill. The significant featuT_s heTv. aT_ the robustness of the tT_ut.sm_sion probability around

the zero of eneryy as the stTv.ngth of d'Lsorder is increc_sed attd the dip in tra_smissio n probability at

eneryies close to the beginning of the second sub-band. The inset shows energy versus wave vector for

the first (solid) and the second sub-trend (dashed): the w,_locity of electrons at the minima of the solid

line is zero. (From reference [9].)

Fig. 2 is a plot of the transmission probability w'rsus energy for three different

wtlues of _lisonlcr. The'n, an' three main poillts that wc want tt) conw'.v hen'. The

[irst is the insensitivity of the transmission prol)al_ility tt_ ¢lis_nl_,r at energies close to



tile baud center, where only two sub-ban(Is are present. [C_ondo,,,[ _ 0.25e1" results in

ml iusigifificant reflection prol)ability. A large value of ](,.,_,,,_o,,,] = 1.75e_" causes more

reflection but insufficient to change the transmission drastically at the band center. The

reason for this robustness is that electrons in a CNT can find transmission paths around

defects because of the large number of atoms in a cross section. And, importantly

they result in only two modes at the I)and center into which electrons can reflect. If

this intuitive explanation is correct, we would expect that for a given ]c_,.ndo,_], the

transmission should depend on the radius of the tube. That is, with increasing number

of atoms along the circumference or' tile tube, the transmission should increase. In Fig.

3, we show that this is indeed the case by comparing the transmission of (10,10), (5,5)

and (12,0)-zigzag tubes, each with a 1000 A disordered region. The diameters of these

tubes are 13.4,4, 9.,1 A and 6.7 A respectively. For the (10,10) and (5,5) tubes, the band

structure at energies close to the Fermi energy are similar [20]. However, the number

of atoms in a unit cell of a (5,5) tube is only half of that of a (10,10) tube (20 and 40

atoms, respectively). The important point here is that although the transmission of

disorder-free (10,10) and (5,5) tubes at energies around the band center are identical,

transmission is smaller for the (5,5) tube in the presence of disorder. The (12,0) zigzag

tube has a diameter between that of the (10,10) and (5,5) tubes. Correspondingly, the

average transmission is between the values of the (10,10) and (5,5) tubes. Reference

[8], using analytical expressions addresses the reason for small reflection at the band

center.

The second point we wish to make about Fig. 2 concerns localization. We have

calculated conductance as a flmction of the length of the disordered region. For dis-

ordered regions larger than the localization length (L0), the conductance of any quasi

one dimensional structure has been predicted to decrease exponentially with length,

g = go exp(-L/Lo), in the phase coherent limit [21]. For lengths shorter than the

localization length, the decrease in conductance is not given by this relation. We ob-

serve this to be the case in Fig. -1. The inset of Fig. 4 shows that the conductance

does change exponentially with length for disordered regions larger than L0. The value

of L0 corresponding to disorder strengths of leV and 1.75eV are 3353 JI and 1383

resl)e(:tively. We note that in Fig. 4 tile conductance of a micron long (10,10) nanotube

with [¢_,,,_o,,,[ = 0.25eV is large, at)t)roximately 1.5_.

Tile third point we want to convey is the large decrease in transmission probability

at energies where many sub-bands are present, and especially tile dip in transmission

probability corresponding to tile ot)ening of a new sub-band. Tile origin of this dip in

transmission probability is the low veh)city electrons in the second sub-band (inset of

Fig. 2) and can be exI)lained as follows. In a perfect lattice, the. velocity (dE/dk) or

electrons in tile secon(I sutM)and tin(| with an energy (:lose to the minimum is nearly

zero. These low-velo(:itv ele(:trorls are easily refle(:ted by the smallest of disorders.

Disor([er causes mixing of the first and second su l)- bands. .,ks a result, electrons incident

in either sub-baud at these energies have a large reflection cocfli(:ient (in comparison

to electrons with energies close to the band (:enter). Increasing tile disorder strength

results in flu'ther reduction of the (:onductance and also results in tile broa(lening of

the (tip. :\ (lip in transmission pro[)al)ility at the formatiozl of _ww sub-ban(Is was also

found in ill referetwe [22], in th('ir study o[" quasi otto (lim(msionM wires. At (mergies

away I'rotn the ban(l cetlter, marly snl)-bands exist..,ks a result, an electron inci(hmt at

ttl(,Se energies has ma_lv sul)-l)all(ls into which it can re[leer. This a(,(:Oml)auie([ [)y the

large re[h,(:tion ([ue to h)w velo(:itv st_tt(,s at sul)-bau([ Ol_enings l('a(ls to a transmission

l_r()lml)ilitv that is greatly (lizlm_sh(,_l in (:omparis(m t() that at low ('n('rgies, where there

at(' (_lllv two sul)-I)azl¢ls (Fig. 2). F_)r eXamlfl(', iu Fi_. 2, the tr;ulsl,issiem 1)r()l)al)ility
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Figure 3: Average transmission probability at the band center versus disorder strength for wires of

different diameter. The transmission probability has been averaged over a thousand different realiza-

tions of the disorder. The main feature here is that the average transmission probability decreases

with decrease in the number of atoms along the circumference of tile wire. (From reference [9].)

at E = 2eI" is equal to 10 in a disorder-free (10,10) nanotube, while even a small

[er,,,,ao,,_[ = 0.25cV reduces this to a about 6 or 7.

Although transmission through CNTs is relatively insensitive to weak-disorder type

defects, there may be other type of defects that are capable of changing the transmission

probability more dramatically at the band center. We consider one such defect type

below.

Strong isolated defects (defined to be lattice locations onto which an electron

cmmot hop) are isolated clue to a either a large mismatch in the on-site potential or

weak bonds with neighbors. It was shown in reference [23] that scattering from a single

such ([efi_ct causes a maximum reduction in tile transmission probability at the band

center E=0. The transmission probability of a 1000 A long (10,10) nanotube with ten

defects scattered randomly along the length is plotted in Fig. 5. The main point is

that independent of the exact location of these defects, a transmi.s.sion gap opens at the

center of the band as the number of defects is increased. The width of the transmission

gap i.creases with the incre_se i, deflect density [9]. The transmission probability also

<[e<:reases sharply at energies corresl)On_ling to the opening of the second sub-band,

although this effect is weak eomtmred to that due to weak unifi)rm disorder. While

there is as yet no exl)eritnc,ntal evidence fi>r such strong scatteritlg, we expect that

whe. the Fermi e.ergy is close to E = 0, the low l>i_ls co.ducta.co will I>_,small in the

l,rese.ce of s.ch defiwts [9].

(;
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Figure 4: Conductance versus length of the (10,10) CNT. While for the large disorder strengths, the

conductance is significantly affected by disorder, the conductance is reasonably large for tile smaller
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close to the band center. Inset: log(Conductance) versus length for disordcr strength of 1.75eV, in a

(5,5) CNT. The solid line/filled circle corresponds to the simulation and the dashed line/empty circle

corresponds to that obtained using 9 = goexp(-L/Lo). (From reference [9].)

4 Transport through a polyhedral cap

The disc:ussion of transport through capped nanotubes is restricted to armchair tubes

with polyhedral caps. The discussion closely follows our work in reference [14]. The

main issues we address here are: (i) the relationship between the LDOS and the trans-

mission probability through cap atoms in a defect free CNT, (ii) the effect of the

localized discrete energy levels in the cap, and (iii) the effect of defects on tunnel cur-

rent/transmission.

The transmission probability and LDOS are calculated fi)ra (10,10) nanotube with

a polyhedral cap (Fig. 6). This cap has a five-fold symmetry, with one pentagon at

the cap center and five pentagol_s placed symmetrically around it. The geometry is the

same as in Fig. 1 but with the metal contact at the center absent. The transmission

l_rol)ability is calculated from the substrate to the semi-infinite nanotube lead at the

right hand side of Fig. 1 (with,rot the metal contact at the center). _Ve assume only a

single _ttom in the cap mak_'s c_z_tm't with the substr_tte. The atom making contact is

shown circled in Fig. 6. The c()tzt;i.ct is modeled I)y an energy indel)endent self-energy

Jill Eqs. (1) and (2)1, =.s'.v" Wirhitl the context of a single parameter tight binding

[lamiltonian, the 1)olvhedral cap has localized states (with an infinite lifi,-time) that

clc,c_tv into the mtnotul)_, [10]. C_ul)litlg of the, cap to the substrata' causes hybridization

[>etweezl the sul)st, rat_' stats,s, Ilam)tulw cont immm states and localized states of the

l)_)lyh_'dz'_tl ¢,;tl). This hybridizatiozs tra_sl'_wms the loc;tliz_'d states i_tto quasi-localized

7
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Figure 5: Transmission probability versus energy of a (10,10) CNT with ten strong isolated scatterers
sprinkled randomly along a length of 1000 A. The main prediction here is the opening of a gap in the
transmission probability around the zero of energy. The traalsmission probability of a defect-free tube
is shown in Fig. 2. (From reference [9].)

states (finite life-time).

The density of states averaged over the cap and over unit cells at various distances

away from the cap is shown in Fig. 7. The distance is measured in terms of the

number of unit cell lengths of the (10,10) nanotube. In Fig. 7, there are two localized

states in the energy range considered, one around 0.25 eV and the other around -1.5

eV. The transmission probability (Fig. 8) corresponds directly to the LDOS at most

energies. The major difference is near the localized state energy, where the LDOS peaks

corre_pond.s to transmission zeroes. The solid line in Fig. 8 is for E_ = i. 0.25eV, a

purely imaginary number, which corresponds to a smooth antiresonance. _owever,

when the cap makes contact to the substrate EI_,.would in general also have a real part.

The da_shcd curve in Fig. 8 corresponds to E_ = 0.25 + i • 0.25eV. This curve retains

the anti-resonance feature, but the shape has changed as a result of the non zero real

part, which is consistent with earlier calculations ill quantum wires with stubs [2.1].

The transmission dip arises from hybridization of localized and continuum states via

eoul)ling to the substrate, in a manner akin to Fano resonan(:es [25]. States in the

CNT cap (tOtal)rise localized (¢L) and contimnmi ((Pc) states that are uncoupled to

each other. Bringing the sul)strate in close proximtty to the cap couples ¢L an(l Or:,

to the substrate states (¢s)- As a result, electrons can be transmitted fl'om ¢x to Oc,

either directly (_s --+ Oc,), through the localized states (_bs + _L -+ Cs _ Oc'), and

through higher order interactions. The interference between these paths gives rise to
the transmission antiresonances.

_V(' How (,()tlsi({(!r (,hang(!s t() tlm at_tir('sonan(:(' l)ictur(' ([u(, to d(,f(,cts in ;l tul)(' :\
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Figure 6: (10,10) carbon nanotube with a polyhedral cap. The dashed lines connect equivalent sites of

tile cap and nanotube in this two dimensional representation. The dashed box shows a bond rotation

defect (From reference [14].)

defect locally mediates mixing/hybridization of localized and continuum states. This

leads to transmission paths similar to a double barrier resonant tunneling structure,

where the two scattering centers provide coupling between the substrate, the nanotube

localized state and the defect. In addition, the paths leading to tile transmission an-

tiresonance discussed previously also exist, and are accounted in the model.

To demonstrate the effects of defects on transmission through a polyhedral cap,

we consider a topological bond rotation defect (box in Fig. 6) [26]. The LDOS remains

similar to Fig. 7 but in comparison to Fig. 8, the transmission probability has changed

signifi(:antly around the localized energy levels as shown in Fig. 9. Resonant peaks

appear in the transmission pr()i)al)ility. The resonance width here is determined by

two contributions: twbridization of the localized and continumn cap states due to the

sul)strate and the distance of defect from the cap. In particular, the second contribution

(tel)ends on I < ¢(.'lH, t,:f,_tlCL > [, wh(:re t[,jef_ct is Hamiltonian of the defect. 1¢LI 2

(or the density of states of tile localized state) decays with distance away from the

caI). As a result, the width of tile transmission resonance depends on location of the

defcct. Fig. 9 shows the transmission f()r two different distances of the defect from

th(_ cap (LD): Lo --= 7 an(l LI_ - 1 5, where Lt) is in units of the one dimensional unit

(:ell length of armchair tubes. The main feature in Fig. 9 is that the tran.smission

re,soua.uce width becom.e.s ._maller a.s di._lance of the defecl f_w,t the cap incre.a.ses. Tiffs

can 1)(, ml(lerstood from the I'm't tlmt the str('ngth of hyl)ridization I)etwcen continuum

and localized states in the cap cause([ I)v the (h'fiwt (I < O(.'llI,l,,f,',:t.lOL > I) (h:creases as

(list;m(:(, of th(, (lcfi,(:t ifl(:r'(,as(,s/'ram t.h(, cap. Iti t(,rms of tit(: (:ur;'(mt carrying (:apacity,

cl(,arlv fr_)m Fig. 9, th(, r(,s(m_ll_t st at,, is (al)al)le of carrying ;t htrg(, current 1)er rout
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5 Conclusions

Two aspects of single particle transport through carbon nanotube wires were reviewed.

In section 3, calculations of the transmission probability through carbon nanotube wires

with simple defect models were discussed [9!. It was shown that carbon nanotube wires

with weak uniform disorder are relativeh./ insensitive to back scattering at energies where

only the crossing bands (close to E=O) contribute to transport. The localization length

of nanotube wires calculated in references[7, 9, 27] is large, implying that nanotubes

are good molecular wires. The reflection proi)ability at energies away from the band

center (where many sub-bands coexist) is much larger. At energies corresponding to the

openi_g of new sub-bands, coupling of high an(l low velocity states causes a (lip in the

transmission, which should be observable in experiments where the Fermi energy can

be tuned. The transmission pro[)ability through nanotube wires with strong scatterers

were also (:ah:ulated. These structures show a trazlsmission gap around E=0, whose

width iaci'eases with the numi)er of defi'.ets.

Traasport experiments have demoastrate(l that carl)on _lanotul)es are ex(:ellent

"In addition to the transmission resonmlce around (}.25eV, there is a new nm'row re_)nance aromld

0.5eV in Fig. 6. This new resonance is due to quasi-localized states a,ssociate(I wilh the bond rotalion

defect. This is (liscus,_d fm'lh(:r in reh_renc(: [l,t].
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Figure 8: The transmission probability corresponds to the LDOS at most energies except at the peaks

in Fig. 7. Around these energies, there is a transmission antiresonance.

metallic molecular wires, having allayed to a large extent the concerns of large contact

resistance and the effect of deformation due to coupling with the substrate [5, 6, 28, 29].

While carbon nanotube wires are still far away from real applications in nanoelectronics,

they are a good test bed for experiments in both molecular electronics and the basic

study of physics in quasi one dimensional systems with electron-electron interactions

[29, 30, 31]. These comments would be incomplete without pointing out that references

[5] and [6] measure conductances that are very close to integer multiples of 2_2-E, instead

4_2 that a simple mode counting picture would yield. An openof integer multiples of

question is if this phenomenon is 1)articular only to these experiments [5, 6] or is it

more universal. In any case, a simple and clear explanation of this does not exist at

present in the literature.

The second aspect, disussed in section ,1 dealt with transport through armchair

nanotube wires with polyhedral caps. Localized and continuum energy levels have

been shown to coexist [10, 1,1]. In comparison, asymmetric caps in general lead to

quasi-localized states as opposed to localized states, as shown in references [1l, 12, 13].

The transmission probabilty from the substrate to arl atolrl i, the cap and into the

nanotube continuum states folh)ws the LDOS of the atom. The one exception to this

is at the energy of the localizc(l states. At this energy, while the LDOS is peaked, the

transmission probability exhibits an antiresonan(:e with minimum equal to zero [14]. A

(l(,fe(:t in the tube causes hybri(lizati(m between tim (:outinuunl and localize(I le.vels. As

a result, scattering due to (tefi_(:ts it_ the tube (:at1 transform this sharp antirc, somtnce

to a transmission resouanc(, (hw to new intcrfi'r(,u(,(' paths, similar to the 1)ehavior of a

structure with two s(:attcring (:caters. The curr('nt carrying (:_tl)a('ity of this resomtnce

is how(,vcr sensitive to the position of th(' d(,f('('t i, th(' tul)(,. This makes sense I)(,(:aus(,
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the hybridization between the continuum and localized levels becomes weaker with an

increase in the distance of the defect from the cap.
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